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Unexpected epimerization and stereochemistry revision of
IMDA adducts from sorbate-related 1,3,8-nonatrienes
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Abstract—Intramolecular Diels–Alder (IMDA) reaction of two sorbate-related 1,3,8-nonatrienes has been investigated in MeCN at
180 �C for 1.5 h under controlled microwave heating. On checking the crude product mixture before purification, partial epimeriza-
tion of the major adduct was found during the reaction. After column chromatographic purification over silica gel, only two cis
adducts were obtained and their structures have been thoroughly established by X-ray crystallographic analysis. It is concluded that
the putative major trans adduct predicted by the IMDA reaction mechanism undergoes facile epimerization at high temperature or
in the presence of silica gel. Structural revision on the adducts has been made.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. The known IMDA reactions of sorbate-derived 1,3,8-
nonatrienes 2 and 3 and originally assigned adducts 4–7. Structures 4

and 5 are incorrectly assigned according to this work.
Intramolecular Diels–Alder (IMDA) cycloaddition has
enjoyed numerous applications in assembling polycyclic
molecular architectures, many of which are associated
with natural products.1 During a study on synthesis of
cis bicyclic d-lactones related to vernolepin, Boeckman
and Demko reported formation of the bicyclic c-butyro-
lactones 4 and 5 in ca. 40% combined yield when the (E)-
3,5-hexadienate-derived triene 1 was heated at 220–
250 �C for 4 h (Scheme 1).2a The same adducts were pro-
duced from the sorbate-derived 1,3,8-nonatriene 2 at
135 �C for 15.5 h in 79% combined yield. The major
adduct was reported to have a melting point of 62–
64 �C. From a related IMDA reaction of allyl sorbate
3, Martin and co-workers prepared the c-butyrolactones
6 and 7 in 76% combined yield by heating at 250 �C for
120 h.2b In both studies, the major adducts 5 and 6 were
assigned the same trans bicyclic skeleton but the
proposed stereochemistry for the minor cis adducts is
different.2 Paddon-Row and Sherburn3 used DFT calcu-
lations in studies on stereoselectivity of IMDA reactions
of penta-1,3-dienyl acrylates and found that trans
adducts were generally favored for pentadienyl maleates
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and fumarates (structurally similar to 2 by relocating the
ester carbonyl from C5 to C7).4 The ester tether is found
to orient toward exo direction in trans transition state
(trans-TS) leading to trans adduct while in cis-TS is
found to point toward endo position leading to cis ad-
duct.3 One cause in favor of trans-TS is the reduction
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Figure 1. Partial 1H NMR spectra of crude reaction mixture of 2

before (a) and after (b) treating with silica gel.
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of strain developed in the tether-containing ring as the
consequence of twist-mode asynchronicity associated
with bond formation in TS.4,5 If one assumes that a sim-
ilar factor is playing in the IMDA reaction of sorbate-
derived 1,3,8-nonatrienes such as 2 and 3, the trans
adducts 5 and 6 are predicted as the major stereoisomers
according to the trans-TS and the cis adduct 7 is the
minor adduct formed from less favored cis-TS. How-
ever, structure 4 seems not consistent with the common
‘concert’ IMDA reaction TS. As a continuation of our
studies on microwave-assisted Wittig reaction,6 tandem
Wittig–IMDA reaction,4 and other heterocycle synthe-
sis,7 we had an opportunity to examine microwave-
assisted IMDA reaction of sorbate-related 1,3,8-nona-
trienes. This class of substrates, except for 22a and
3,2b has not been described in the literature. We report
here on an unexpected epimerization of the major
adduct and revision of stereochemistry of the isolated
adducts on the basis of X-ray crystal structural analysis.

First we repeated the IMDA reaction of the known sor-
bate 22a as shown in Scheme 2. The reaction was carried
out in a closed pressurized process vial in MeCN at
180 �C for 1.5 h under controlled microwave heating.8,9

In our previous study on IMDA reaction of pentadienyl
fumarates, nearly the same results were obtained for the
reaction in MeCN and PhMe.4 The crude reaction prod-
ucts were checked for diastereomer ratio by 1H NMR
spectroscopy. Three sets of doublet signals were found
for C5–Me and they are assigned for the bicyclic c-
butyrolactones 9, 10, and 11 (Fig. 1a) on the basis of
the finding described below. The crude products, a
14:64:22 mixture of 9:10:11, upon treating with silica
gel in EtOAc–petroleum ether at room temperature for
over night, were converted into a 13:87 mixture of 9
and 11 (Fig. 1b). The results clearly indicate that epi-
merization of 10 into 11 occurred during the IMDA
reaction albeit to a limited degree. The process was facil-
itated by silica gel so that 10 was completely converted
into 11 even at room temperature. It was confirmed
again when the crude product mixture of 2 was sub-
jected to column chromatographic purification, only
2: R = Me
8: R = Ph
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Scheme 2. Microwave-assisted IMDA of 2 and 8 and epimerization of
trans adducts 10 and 13 into cis isomers 11 and 14 with silica gel.

Figure 2. X-ray crystal structure of 11.
910 and 1111 were isolated in 12% and 67% yields,
respectively.

The melting point (60–62 �C) and 1H NMR data of 11
are consistent with those reported for 5. In order to
resolve the discrepancy on the structure of 11, an X-ray
crystal structural analysis was performed. As depicted
in Figure 2, 11 is a cis-fused bicyclic c-butyrolactone.12

Interestingly, 11 is the structure proposed for the minor
adduct 4 in Boeckman and Demko’s work.2a We found
that the 1H NMR data of 4 are consistent with those of
9. Because the melting point of 9 is 38–40 �C, it’s not
easy to get suitable quality of single crystals for X-ray



Figure 3. Partial 1H NMR spectra of crude reaction mixture of 8

before (a) and after (b) treating with silica gel.

Figure 4. X-ray crystal structure of 12.

Figure 5. X-ray crystal structure of 14.
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crystallographic study. We turned our attention to the
C5–Ph-substituted analogs 12 and 14 (Scheme 2).

The IMDA reaction of 8 was carried out in a similar
manner as described for 2 and the 1H NMR spectra of
the crude product mixture before and after treatment
with silica gel are shown in Figure 3. In Figure 3a, three
sets of triplet signals are identified for the methyl group
in the ethyl ester moiety of 12, 13, and 14 in a ratio of
10:16:74. It is indicated that the initially formed 13 lar-
gely epimerized to 14 during the reaction. After treat-
ment with silica gel, 13 was completely converted into
14, resulting in a mixture of 12 and 14 in a ratio of
10:90 (Fig. 3b). Pure compounds 1213 and 1414 were iso-
lated in 10% and 81% yields, respectively. Fortunately,
we obtained single crystals for both compounds and
determined their structures by X-ray crystal structural
analysis.12 The structures 12 and 14 as depicted in
Figures 4 and 5 are all cis-fused bicyclic skeletons.
According to the similarity that both 9 and 12 did not
undergo epimerization, we suggest that 9 should have
the cis-bicyclic structure shown in Scheme 2. According
to the TS proposed for the IMDA reaction of the closely
related pentadienyl fumatates,3a the major adducts
formed from 2 and 8 should be the trans-10 and trans-
13, which epimerized to the thermodynamically more
stable cis isomers presumably through the enol form
of the lactone. Presence of the double bond at C6–C7
is a prerequisite for epimerization because the related
c-butyrolactones generated from pentadienyl fumarates
do not undergo epimerization at a-position of the car-
bonyl group.4

In summary, we have observed unexpected epimeriza-
tion of the major adduct formed from IMDA reaction
of the sorbate-related 1,3,8-nonatrienes and determined
the structures of both major and minor adducts by X-
ray crystal structural analysis. The isolated adducts after
column chromatographic separation are all cis-bicyclic
c-butyrolactones, which are complementary to the
trans-selective IMDA reaction of pentadienyl-derived
1,3,8-nonatrienes4 and offer different stereochemical
diversity. Our results revise the wrong structures
reported in literature.2a Further study on the scope
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and application of the IMDA reaction of sorbate-related
1,3,8-nonatrienes is in progress.
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